SOARISTO工房 Logo
Car Archive

 南半球から、赤道を越えて、

Tiny VGA Graphics Controller

 はるばるオーストラリアから、航空郵便が届きました。0xF8E6

Tiny VGA Graphics Controller

 RGB出力をするための3点セットです。

Tiny VGA Graphics Controller

 画像で見ると大きく見えますが、笑っちゃうぐらい小さいです。ほんとにTinyです。

 こんなんで、ちゃんと動くんでしょうか。0xF9C7

Tiny VGA Graphics Controller

 とりあえず、デモプログラムは動きました。

 なお、表示解像度はVGA(640×480)ですが、VRAMサイズ(512kbyte)の関係で、有効描画サイズは620×420となります。(なので、画面が若干左上に寄ってます)

#表示開始位置をいじれればいいのですが、ファームウェアを変えないとダメそう。

 オーストラリアからの小包が、なかなか届かないので、それまでの間、少し「頭の体操」をしてみることにします。

 以前に、「3軸加速度センサ」を搭載して、車両に掛かる横G/縦Gを検出するアイデアについてお話ししましたが、

3D Accelerometer

 「3軸加速度センサ」からの値に応じて、iDriveのセンターディスプレイに、このような画像を表示してみることにします。
(この場合、「横G」の大きさに合わせて、M3 Coupeの後面図を回転させています)

 さて、このように回転させた画像を、リアルタイムに生成するには、どのように計算すればよいでしょうか。

(以下、編集中)

#回転行列と逆行列、線形二次補間のお話をする予定。

2010/02/05
[ Car, News ]

 前回は偽装されていましたが、今回のスパイショットは、すっぴんです。

2011 BMW M3 Facelift
(画像は、MotorAuthorityさんから拝借)

〔関連情報〕
   ・Spy Shots: 2011 BMW M3 Facelift
   (2010年2月4日:MotorAuthority)

 今回使用するコントローラは、USARTインタフェースを2つ持っている必要があります。「ELM327」との通信用と、「µVGA-PICASO-MD1」との通信用です。

 PIC18Fファミリの中では、PIC18F6xxxxシリーズか、PIC18F8xxxxシリーズとなります。

 PIC18F4xxxxシリーズは、40ピンのPDIPパッケージが中心ですが、PIC18F6xxxxシリーズは64ピン、PIC18F8xxxxシリーズは80ピンのTQFPパッケージが中心となり、手作業でハンダ付けするには、ちと厳しくなります。

 PIC18F6xxxxシリーズか、PIC18F8xxxxシリーズのどちらを選ぼうかと、いろいろ考えていたところ、いいモジュールを発見しました。0xF9CF

PIC18F8722 Module Kit

 秋月電子通商さんの「PIC18F8722モジュールキット」(3,200円)です。

 「PIC18F8722-I/PT」(プログラムメモリ:128kbyte、データSRAM:3,936byte、データEEPROM:1,024byte)に、20MHzクリスタル、32kHzクリスタル、RS232ドライバIC(ADM232AARN)、3端子レギュレータ(TA48M05F)を実装しています。

 このモジュールでは、20MHzのクリスタルを実装しているので、動作周波数は20MHzとなります。一方、PIC18Fファミリは、4逓倍のPLL回路を内蔵しているので、これを使用すれば、外部発信器の4倍の速度で動作させることができます。

 今回は、VGAコントローラとの通信タイミングがシビアそうなので、10MHzのクリスタルに付け替えて、PIC18Fファミリの最高動作周波数である「40MHz」で動作させることにします。

 画像右端のクリスタルは、表面実装用の10MHzのクリスタル(40円)です。

 内部動作周波数を40MHzとすることで、USARTのボーレートは、230,400bpsまで高めることができます。
(受け側の「µVGA-PICASO-MD1」は、最高1Mbpsまで、「ELM327」は、最高38,400bpsまでですが)

 秋月さんに行ったついでに、加速度センサも買っておきました。

KXP84-2050

 秋月電子通商さんの3軸加速度センサモジュール、「KXP84-2050」(1,200円)です。

 Kionix社の3軸加速度センサ、「KXP84-2050」を実装し、X/Y/Z方向に、最大2Gの加速度を感知することができます。ディジタル出力が可能で、PICとは、SPI(またはI2P)通信で、データを読み出すことができます。

 画像では分かりにくいのですが、実物は5mm角程度しかない、非常に小さなチップです。

 本来は、ノートPC用の小型ハードディスクに実装し、ノートPCを落としてしまった時など、フリーフォール状態を検出し、ヘッドを瞬時にリトラクトして、ハードディスクを保護するような用途に使われています。
(最近では、ジャイロセンサと組み合わせて、小型ロボットの姿勢制御にも使われているようです)

 車両の挙動において、横G/縦Gの大きさが「2G」となることが、どの程度のものを表すことになるのか、まったく分かりませんが、とりあえず実験クンしてみます。
(「6G」まで検出できるモジュールもあるようですが、「6G」って・・・)0xF9FC

 前回の実験により、自作のOBD-IIインタフェースを介して、車両側より各種情報を取り出せることが分かりました。

 つぎなる課題は、取り出した各種情報を、“どのように表示するか”です。

 昨日、Apple社から「iPad」が発表されました。9.7型、1,024×768ドットのIPS液晶を持っています。いずれ、以前にご紹介した、こんなアプリケーションが出てくるとは思いますが、車内に設置するには、明らかにデカ過ぎです、邪魔です。0xF9D1

 ここはやはり、“スマート”に、iDriveのセンターディスプレイに映し出すことにします。
(運転中のドライバーの視認性を高めるために、「あの位置」にあるのですから)

 PICを始めとするマイクロコンピュータに、「RGB出力機能」を持たせるための、便利なモジュールがあります。オーストラリアの4D Systems社が開発・販売している、「µVGA-PICASO-MD1」というモジュールです。

µVGA-PICASO-MD1

 これが、4D Systems社が開発した「PICASOチップ」を搭載したボードです。

 4D Systems社が「世界最小のVGA/SVGAコントローラ」というだけあって、大きさは、わずか24mm×19mm程度しかありません。

 本来は、小型液晶モジュールをコントロールするためのものですが、「PICASOチップ」だけを取り出して、RGB出力できるようにしたものが、このモジュールです。

 小さいながらも、512kbyteのVRAMを持っており、QVGA(320×240)で8画面、VGA(640×480)で2画面、SVGA(800×600)で1画面の容量があります。
(現在のファームウェアでは、SVGAはサポートさせていません)

 ユーザーズマニュアル(英文47ページ)を読んでみると、ふむふむ、なんとか使えそうです。

 VGAで2画面分のメモリがあるので、ダブルバッファによるフリッカレス表示ができそうです。
(“VSYNC待ち”もあるのですが、割り込みを使いたいので、信号を外に出して欲しかった・・・)

µVGA-PICASOMD1-UB

 モジュール単体だと、小さすぎて扱いにくいので、「ベースボード」(µVGA-PICASOMD1-UB)が出ています。

 ラダー抵抗によるD/A変換により、256color/pixelのアナログRGB出力ができます。USARTインタフェースを持っており(電圧はTTLレベル)、外部からシリアル接続にてコントロールします。
(MicroSDカードスロットが装着されており、BMPファイルを読み込んで表示できるようになっていますが、現在のファームウェアでは、サポートされていないようです)

µVGA-PICASO-MD1

 「世界最小のUSB/シリアル変換モジュール」(µUSB-MB5)を取り付けることもできます。

 とりあえず、USB接続にして、デスクトップPCで開発してみることにします。

 4D Systems社のデモです。

〔関連情報〕
   ・µVGA-PICASO-MD1
   ・Users Manual
   (4D Systems)